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Objectives

1. Explore experimentally the trade-off space between
performance and noise footprint of coaxial co-rotating
propellers, within a test domain defined by the
degrees of freedom of the problem (®, z).

2. Retrieve the relationships between propulsive _
efficiency and noise generation found in literature and
investigate new ones. /i

3. Retrieve the results obtained experimentally by
employing a combined use of numerical tools to
assess the advantages and limitations of a fully virtual
design of such propulsive systems. "
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Experimental Methodology

Performance Campaign (1/2)

» Thrust and Torque measurements.

= Axial distance ranges from 21 mm to 42
mm with 7 mm increments.

= Phase offset ranges from -90° to +90°
with 10° resolution, increased to 5°
between -45° and +45°.

= Total of 116 tested cases, at a fixed
velocity of 6000 RPM.

* Composite 2-bladed propellers, 33 cm B
diameter, commercial drones application. E .

» Performance(®, z) and efficiency(®d, z). | &

Experimental setup - ALCOVES
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Experimental Methodology

Performance Campaign (2/2)

Propeller 2 Propeller 1

Tachometer Absolute Encoders

.,

ESC Motor Controllers

%
Loadcell /g

RPM
with m = 0 and P = 2mnQ
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Experimental Methodology

Noise Campaign

= ALCOVES anechoic
chamber of VKI

= 24 GRAS microphones
antenna.

= Noise footprint in the 3D
space around propellers

= Directivity of Noise

= Tonal Noise

= Qverall Broadband Noise

= Total of 62 tested cases.

Microphone antenna alignment with shaft - ALCOVES
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Numerical Methodology

Loads Simulation

Geometry & Motion

"

FlightStream

g

Aerodynamic Loads

/

BATMAN "

"

Tonal noise
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FlightStream: commercial surface vorticity solver

Adopted Tessellation

Public Workshop: Novel Tools for Novel Aircraft — Bristol

Number of propellers
revolutions: 8

Wake termination point: 1.5
D=45cm

Time increment: 0.3 ms,
corresponding to 10.77 °/iter
Number of iterations: 268
Number of faces: 2568
Tessellation size: 2.1 mm on
blade tip, leading and trailing
edge patches; 4.2 mm on
flatter patches
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Numerical Methodology e

Noise Simulation -
BATMAN " in house CAA platform

Geometry & Motion = FWH analogy

= Lighthill tensor associated
with turbulence is
neglected.

Forces acting on the
propellers are periodic.

= Far-field approximation.
The source domain is
BATMAN ™ considered acoustically
compact.

Tonal noise ‘

TONAL NOISE by ROTATING DIPOLE at first BPF

g

FlightStream

g

Aerodynamic Loads

"

"
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Results
Aeroacoustics Results (1/3)

Example case: z = 28 mm
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Higher Efficiency = Lower OABBN
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Confirmed what suggested

,, _ in recent literature
Offset Angle [ ] ---=> Upper Leading
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Results
Aeroacoustics Results (2/3)

Example case: z = 28 mm

FIXED THRUST ANALYSIS:

Tonal Noise Level Broadband Noise Level
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Results
Aeroacoustics Results (3/3)
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Results

Performance Simulation & Validation
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Lower leading:
Offset Angle & < 0°

Upper leading:
Offset Angle & > 0°
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Resu |ts MAX-MIN POWER LOADING ANALYSIS:

Experimental BPF 1 BATMAN
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FlightStream + BATMAN " as
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FIXED THRUST ANALYSIS:
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Recirculation from the 2nd BPF - Single Propeller

Ccase

100 dB

B RN
e e 6 W o)

eVTOLUTION Public Workshop: Novel Tools for Novel Aircraft — Bristol - 06 February 2025



Conclusions

1. Creation of a wide Experimental Dataset of performance and
noise for coaxial co-rotating propellers, as a function of (®, z).

2. Relationships between propulsive efficiency and noise have been
retrieved and depicted, confirming the ones suggested in recent
literature, and bringing further insights.

3. The aeroacoustics relationships highlighted experimentally have
been predicted by a combined use numerical tools, approaching a
fast and fully virtual design.

4. The numerical predictions have been validated for the first BPF.

BB

eVTOLUTION Public Workshop: Novel Tools for Novel Aircraft — Bristol - 06 February 2025

14



Thanks for your kind attention!
Questions are welcome

Aerodynamics and Aeroacoustics of
Coaxial Co-rotating Propellers

Andrea Beni, Andrea P. C. Bresciani,
Julien Christophe, Christophe Schram (VKI)
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