

Dynamic Surrogate Modelling Enhanced by Artificial Intelligence and Machine Learning Techniques in Aerodynamics and Aeroacoustics

Public Workshop: Novel Tools for Novel Aircraft

Bristol, 06 February 2025

Lorenzo Burghignoli, Caterina Poggi (Roma Tre University)

eVTOL mUlti-fideliTy hybrid desIgn and Optimization for low Noise and high aerodynamic performance - Grant Agreement 101138209

WP2: Integration of design/optimization tools, experimental testing and flow/noise control

Objective:

include aerodynamics and aeroacoustics characterization of (installed) propellers in Multidisciplinary Conceptual Design Optimization (MCDO)

WP2: Integration of design/optimization tools, experimental testing and flow/noise control

Issues:

- Lack of experimental data and semi-empirical models available for disruptive layouts
- Simulations computationally expensive

WP2: Integration of design/optimization tools, experimental testing and flow/noise control

Solution:

- Surrogate-Models (SM) as alternative solution to high-fidelity simulations can be used in MCDO frameworks
- Exploit AI and Machine Learning techniques to reduce computational time and improve SM reliability

WP2: Integration of design/optimization tools, experimental testing and flow/noise control

Solution:

- Surrogate-Models (SM) as alternative solution to high-fidelity simulations can be used in MCDO frameworks
- Exploit AI and Machine Learning techniques to reduce computational time and improve SM reliability

ANN overview

ANN: Aeroacoustics of DEP

Design variables

Variable	Lower Bound	Upper Bound
No. of blades, n_b	6, evenly spaced	10, evenly spaced
Chord, c	0.324 m	0.396 m
Angular velocity, ω	$2000 \ rpm$	$2250 \ rpm$

ANN: Aeroacoustics of DEP

Poggi, C., Rossetti, M., Serafini, J., Bernardini, G., Gennaretti, M., Iemma, U., Neural network meta-modelling for an efficient prediction of propeller array acoustic signature, Aerospace Science and Technology, 2022.

Dynamic Surrogate Modelling (DSM)

Dynamic Artificial Neural Network: autotuning

Dynamic Artificial Neural Network: adaptive sampling

Dynamic Artificial Neural Network: adaptive sampling

Numerical tools for the aerodynamics and the aeroacoustics of propeller

Aerodynamic solver: Unsteady potential solver based on Boundary Integral Equation Method

• 3D – potential incompressible flows

Main features:

- Free wake formulation
- Multi-bodies aerodynamic interference effects captured
 - Vortex interaction captured

Acoustic solver: Radiated noise evaluated through Farassat 1A Boundary Integral formulation for the solution of the Ffwocs Williams and Hawkings equation

Thickness noise – Loading noise – Quadrupole noise neglected (no transonic/supersonic range)

Widely validated with experimental data for isolated and installed multi-body configurations

Case study: isolated 4B aft propeller (10% model scale)

Variable ranges:

Angular velocity	Vertical velocity
[RPM]	[m/s]
5000 - 9000	0 - 8

Output:

- Thrust
- Torque
- OASPL

Simulation details:

- Mesh: 50 (span) x 50 (chord)
- Wake: 7 spirals
- Time resolution: 1 timestep/deg
- # Revs: 13
- # BPF: 45

Results: OASPL - static SM

- Training Set (22 points)
- Validation Set (3 points)

Global uncertainty

Validation set: ANN prediction

Public Workshop: Novel Tools for Novel Aircraft – Bristol - 06 February 2025

Results: OASPL - dynamic SM

- Initial Training Set (8 points)
- Validation Set (3 points)
- Final Training Set (22 points)

Global uncertainty

Public Workshop: Novel Tools for Novel Aircraft – Bristol - 06 February 2025

Results: Thrust and Torque

Global validation loss: 0.5%

Remarks

- Preliminary tests confirm that Dynamic ANN is a promising tool for developing reliable Surrogate Models for the aerodynamics/aeroacoustics of propellers in the MCDO framework.
- Adaptive sampling leads to a significant reduction in the SM uncertainty when compared to the static (fixed budget) approach.

Next steps:

- A dynamic validation set build strategy is required to avoid overlaps with training points during the adaptive sampling.
- Develop SMs to be used in the optimization tasks (blade geometry and trajectory) of configs. B2 and B3.

